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Abstract

We have collected a new face data set that will facilitate
research in the problem of frontal to profile face verifica-
tion ‘in the wild’. The aim of this data set is to isolate the
factor of pose variation in terms of extreme poses like pro-
file, where many features are occluded, along with other ‘in
the wild’ variations. We call this data set the Celebrities
in Frontal-Profile (CFP) data set. We find that human per-
formance on Frontal-Profile verification in this data set is
only slightly worse (94.57% accuracy) than that on Frontal-
Frontal verification (96.24% accuracy). However we eval-
uated many state-of-the-art algorithms, including Fisher
Vector, Sub-SML and a Deep learning algorithm. We ob-
serve that all of them degrade more than 10% from Frontal-
Frontal to Frontal-Profile verification. The Deep learning
implementation, which performs comparable to humans on
Frontal-Frontal, performs significantly worse (84.91% ac-
curacy) on Frontal-Profile. This suggests that there is a gap
between human performance and automatic face recogni-
tion methods for large pose variation in unconstrained im-
ages.

1. Introduction

Face recognition for unconstrained images is a challeng-
ing problem, due to variation in pose, illumination, expres-
sion, age and occlusion. A significant challenge of pose
variation occurs when features from the whole face are not
visible. These situations appear often in many real world
scenarios like, surveillance and photo-tagging, where it is
quite natural for a person not to face the camera. In this
paper we plan to study the effect of pose variation, isolated
as a factor, in the presence of other ‘in the wild’ variations.
One such case of interest is matching a frontal face facing a
camera to a profile face facing away from the camera. The

features available in both these views vary significantly and
are therefore difficult to match.

We define a ‘near profile’ pose as one that obscures many
features; specifically the second eye. This roughly corre-
sponds to yaw greater than 60 degrees. We define ‘near
frontal’ as those cases where both sides of the face are al-
most equally visible and the yaw is within 10 degrees of
purely frontal. The main motivation of this work is to study
face recognition in the presence of such extreme pose vari-
ation ‘in the wild’.

Face recognition has changed significantly over the past
decade. Starting with constrained, carefully acquired im-
ages, the community has turned its attention to the dis-
tinct problem of face recognition in unconstrained settings.
There are many data sets that have aided this progress. La-
beled Faces in the Wild (LFW) [17] was acquired to study
the problem of face recognition from unconstrained images
and consists of images collected via the Internet. The Mul-
tipie [12] data set encourages face recognition in the pres-
ence of pose, illumination and expression variation in a con-
trolled environment. One of the shortcomings of the LFW
data set is that it doesn’t offer a high degree of variation in
terms of pose, like the variation in pose present in Multipie.
Large pose variation has been shown to be a major chal-
lenge in face recognition. In this paper we propose a new
data set, which in principle is a mixture of constrained and
unconstrained settings. We collect images from the internet,
which are unconstrained, but filter them out to match spe-
cific ‘frontal and ’profile’ poses. This allows us to study
the problem of pose variation in a more controlled way
while all other variations are unconstrained. We call this
data set ‘Celebrities in Frontal-Profile data set’ (CFP). We
believe solving this problem with extreme pose variation
will bring more success to the general problem of uncon-
strained pose variation, especially in cases of surveillance
and photo-tagging.

The data set contains 10 frontal and 4 profile images of



Figure 1. Sample Images from proposed Celebrities in Frontal-Profile (CFP) data set

500 individuals. Similar to LFW, we have defined 10 splits,
each containing 350 same and 350 not-same pairs. The task
is face verification.

To understand how difficult the problem of frontal to pro-
file comparison in the wild is compared to frontal to frontal
unconstrained image recognition, as in LFW, we form two
separate experiments of Frontal-Profile and Frontal-Frontal
face verification. We evaluated some state-of-the-art face
recognition algorithms and human responses on this ex-
periment to obtain a sense of the difficulty posed by this
new data set. We found that humans achieve 94.57% accu-
racy on Frontal-Profile as compared to 96.24% on Frontal-
Frontal. On the other hand we observe that for most state-
of-the-art algorithms, verification accuracy degrades at least
by 10% from Frontal-Frontal to Frontal-Profile, meaning
that the error rate more than doubles. We notice that among
different types of hand-crafted features Fisher Vector [31]
performs better than HoG [10] and LBP [1]. In restricted
settings, Fisher Vector with a metric learning, SubSML [5],
achieves 80.63% accuracy on Frontal-Profile and 91.3% ac-
curacy on Frontal-Frontal. These findings show that face
recognition with large pose variation in an uncontrolled en-
vironment is still an open research problem. Our data set
attempts to enable research in this important problem to
achieve or surpass human accuracy on this task.

Learning features via a deep neural network, has brought
huge success in unconstrained face recognition. Many of
the current state-of-the-art deep learning implementations
[33], [32], [27], are not publicly available. We used a deep
learning algorithm [9] which achieved near human accu-
racy (96.4%) on Frontal-Frontal face verification. However
even this algorithm falls short by 11% in accuracy (84.91%)
on Frontal-Profile verification as compared to humans on
this task. This network was trained with approximately

400K unconstrained images of around 10K subjects. Cer-
tainly one can try to train a network on profile images alone.
However collecting millions of profile images, which most
state-of-the-art deep networks require for training, is diffi-
cult. For example, if we search ‘Google Image’ for profile
images of a person, less than 2% of top 100 images are actu-
ally profile. This means a huge amount on post-processing
needs to be done to remove wrong poses and identities to
collect millions of images. So can we do something bet-
ter without trying to collect a huge number of profile im-
ages? This requires an advance in research in face recog-
nition with large pose variation and our work is aimed to
provide a benchmark for these future researches.

Most algorithms require some facial key-points either for
aligning [33] or extracting features [5]. Current state of
the art key-point detectors fail in the case of near profile
poses. Along with the images, our data set provides hand-
annotated key-points for profile faces to encourage research
in automatic key-point detection for profile faces.

To summarize, frontal to profile face recognition in the
wild is important because:

• It occurs commonly in many applications.

• The performance of existing algorithms degrades sig-
nificantly when comparing frontal faces to profile faces
in the wild.

• The performance of humans in frontal to profile face
comparisons is only slightly worse compared to frontal
to frontal.

In Section 2 we discuss some of the related work in au-
tomatic key-point extraction, face recognition across pose
variation, recognition in real world images and some cur-
rent data sets. Section 3 presents detailed discussion of



the proposed CFP data set. Section 4 discusses the algo-
rithms, whose performance are compared on our proposed
CFP data set, followed by their performance evaluation.

2. Related Work
The vast majority of face recognition methods that at-

tempt to handle pose variation use key-points [5], [7], [33].
Key-points are used to align the images, extract features at
specific locations and warp faces to a canonical view. There
has been quite a bit of progress in automatic key-point de-
tection and there are many publicly available key-point de-
tection algorithms [3], [38] and [36]. State of the art meth-
ods perform very well on frontal images, but the accuracy
of key-point detectors degrades as the yaw or pitch angle
of the face increases. Motivated by the above observation,
we include dense ground truth key-points with our data set,
so that face recognition across pose can improve while key-
point detectors get to the point where they can handle the
full spectrum of pose variation. Also these manually anno-
tated key-points serve as a benchmark for future researchers
trying to develop automatic key-point extraction algorithms
for profile faces.

In addition to facial key-point detection, in this section
we will discuss two streams of work: (1) face recognition
with pose variation and (2) face recognition ‘in the wild’.
The first line of work in general depends on carefully ac-
quired constrained image data sets that focus on pose, illu-
mination and expression variations. Some important data
sets along these lines are Yale-B [11], FERET [24], CMU
PIE [30] and Multipie [12]. The second line of work
is developed around data sets which contain unconstrained
images. Labeled Faces in the Wild (LFW) [17] has be-
come the de facto benchmark for face recognition in un-
constrained settings. Average results on this data set have
increased from 70% to 99% in the past 8 years. The LFW
data set is based on a face verification protocol, in restricted
and unrestricted settings. In the restricted setting, one is
only allowed to use pair-wise information provided in the
splits. However, in unrestricted setting, one can use identity
information to build additional pairs not explicitly listed in
the training data or use outside training data. Some other
data sets which also provide unconstrained images are Pub-
Fig [19] and the YouTube Face data set (YTF) [35].

Face Recognition across pose : Researchers have used
several different approaches to solve the problem of face
recognition with pose variation. One such popular tech-
nique is to fit a Morphable model to the face and warp it
to some canonical view. This line of work started in [4]
and exploded as a general model fitting technique; for ex-
ample Generic Elastic Models (GEM) [25] and Active Ap-
pearance based Models for Pose normalization [2]. How-
ever these methods tend to work well for small degrees of
pose variation and for faces without ‘in the wild’ variation.

Another type of methods are based on subspace learning.
These methods mostly use Canonical Correlation Analysis
(CCA) [14] or Partial Least Square (PLS) [29]. Recently
[20] and [28] (27.1% identification accuracy for Frontal-
Profile in Multipie) have shown good results over the Mul-
tipie and CMU PIE data sets, considering an identification
protocol rather than verification. However it has not been
demonstrated that these methods will actually work for ‘in
the wild’ images. Another direction of pose invariant re-
search is to develop a method to directly compare faces in
two poses using stereo matching [6], which performs well
short of state-of-the-art on real world images such as those
in the LFW data set. Another line of pose invariant face
recognition research deals with generative models. These
methods assume that there is a latent factor that produces
different identities and different poses are generated by an-
other latent variable. Recently [26] have shown good per-
formance in constrained data sets such as FERET [24].
Along the same line [22] produced good results on uncon-
strained data set like LFW (90.07% verification accuracy in
unrestricted setting). Attribute based recognition [19] is
another approach to the problem, which is also potentially
invariant to pose variation, although it is not clear that at-
tributes can be obtained as accurately on profile faces as on
frontal faces. Most of these method depend on good align-
ment across pose, which is hard to obtain for our proposed
CFP data set.

Face Recognition on unconstrained images : In this
section we discuss those methods that have produced good
performance over the LFW data set and other ‘in the wild’
data sets. One general technique adopted by many re-
searchers is to develop metric learning approaches that can
learn a transformation of the feature space to reduce the
variability, which is important for unconstrained images.
Cosine Similarity metric learning [23] and Similarity met-
ric learning [5] (86.73% in unrestricted setting) have pro-
duced good results on the LFW data set. Researchers have
also developed other metric learning approaches [13], [18]
along with Deep metric learning approaches [15] [16]. The
Joint Bayesian model [7] (90.90% accuracy in unrestricted
setting) and [8] (93.18% accuracy) performs well on LFW.
However these methods generally need identity information
during training and thus can only be used with the unre-
stricted protocol (where one can use identity information or
outside training data).

Researchers have also concentrated on feature extrac-
tion techniques other than traditional SIFT, LBP or HoG
to provide a higher level representation. One such effi-
cient method uses Fisher Vector encoding [31] (87.47%
in restricted settings) and [21] (84.08% in restricted set-
tings). However they are not robust against large pose varia-
tion. Researchers have moved from hand crafted features to
trained features using Deep networks namely CNNs (Con-



volutional Neural Networks). Some successful applications
are Deepface [33] (97.35%), DeepID [32] (99.47%) and
FaceNet [27] (99.63%), which have shown to be the cur-
rent state of the art among algorithms on LFW in the un-
restricted setting with outside training data. Since most of
these algorithms are not publicly available, we used a dif-
ferent deep learning technique [9] for extracting features.
We show that it performs as humans on Frontal-Frontal but
falls short by a large margin on Frontal-Profile compared to
humans. However this network is trained on unconstrained
images. One can certainly try to train a network on a large
amount of profile images, which is very difficult to collect.
It will be also interesting to observe how researchers come
up with new methods that can tackle pose variation without
explicitly collecting millions of profile images.

3. Celebrities in Frontal-Profile data set
We have collected a data set of unconstrained faces in

both frontal and profile poses. The experimental protocol
is built upon face verification. Unlike LFW, we decided to
balance the data set by choosing only a fixed number of
frontal and profile images per individual. We will make this
data set publicly available.

3.1. Collection Set-up

To collect our data set we started by generating a list
of individuals. We decided to maintain balance in the data
set by choosing almost equal numbers of males and fe-
males and maintaining as much racial diversity as possi-
ble. We chose a roughly balanced set of politicians, ath-
letes and entertainers. In order to collect frontal and profile
images we downloaded hundreds of images of each individ-
ual for frontal and profile respectively. To search for profile
images, we used keywords ‘profile face’ and ‘side view’.
Though most of the frontal images are correct in terms of
pose or identity, there were lots of non-profile images in the
downloaded profile images. Next we cleaned up the data set
by deleting incorrect identities and poses by using Amazon
Mechanical Turk. We defined ‘frontal’ pose as those images
where both sides of the face are almost the same area of the
image and ‘profile’ pose as those images where one eye is
completely visible and less than half of the second eye is
visible. Roughly, these definitions mean : within 10 de-
grees yaw variation for ‘frontal’ and more than 60 degrees
yaw variation for ‘profile’. To make this technical criteria
clear we provided example images to the Amazon Mechan-
ical Turk workers for reference. We also ran a face detector
[38] to further verify that these images are indeed faces and
they satisfy the yaw variation constraints. We have a total
of 500 individuals and we choose to keep 10 frontal and 4
profile images per person in the data set.

We crop the frontal images by running a face detector
[3]. However these state-of-the-art face detectors perform

Figure 2. key-points for Frontal-Profile Images

Figure 3. Amazon Mechanical Turk window for obtaining human
performance on CFP data set

imperfectly on our profile images. Then we set up an Ama-
zon Mechanical Turk job where we asked workers to man-
ually crop the faces from all the profile image. For frontal
images we extract key-points by running a facial key-point
detector [3]. However none of the state-of-the-art detec-
tors, that we tried [38], [3], work well for profile faces.
We acquired labeled key-points from workers via Amazon
Mechanical Turk. We present the workers with examples of
manually clicked profile key-points and ask them to mark
the same. Since in profile only one side of the face is vis-
ible, we choose to keep key-points only on one side for
frontal faces also. This is to ensure that we always have
correspondence in key-points across all images. An exam-
ple of key-points in frontal and profile is shown in Figure
2. Based on the key-points both the frontal and profile im-
ages are cropped. We create a tight bounding box on the
face based on the key-points and enlarge it consistently to
accommodate large regions of the face.

3.2. Experimental Protocol

We divide the data into 10 splits with a pairwise dis-
joint set of individuals in each split. For each split we have
50 individuals. We randomly generate 7 same and 7 not-
same pairs for each individual, thus producing 350 same
and 350 not-same pairs per split. This is done both for
Frontal-Frontal and Frontal-Profile experiments. In the end,
we have 7000 pairs of faces for both Frontal-Frontal and
Frontal-Profile experiment. Note that our choice of generat-
ing pairs in the split is balanced in terms of number of pairs



Figure 4. Human performance on CFP data set. (Top row) Top 3 mistakes on same-pairs. (Bottom row) Top three mistakes on not-same
pairs. Higher score means more similar in a scale of 1-5.

per person, unlike LFW and YTF data set. Like LFW, the
protocol is to test on one split while training on the remain-
ing nine. Unlike LFW, we do not have separate View 1 and
View 2 (two views are provided in LFW to develop models
and validate on one view and finally test on another), due
to a lack of data (as collecting profile images is more diffi-
cult), therefore similar to YTF we only have one view. For
each split the evaluator is allowed to choose the parameter
of the classifier via cross-validation over the training data
set only. We report the average Accuracy, Equal Error Rate
(EER), Area Under the Curve (AUC) and the ROC curve.

Similar to LFW, there can be a ‘restricted’ setting, where
the evaluator is only allowed to use same-different pairs in
training the classifier and ’unrestricted’ setting, where the
evaluator can use identity labels of the training images. One
can have two more variations depending on the use of out-
side training images which is of special interest in ‘unre-
stricted’ settings. In our experiments we used a ‘restricted
no outside image’ protocol for all algorithms except the
deep learning implementation. Deep learning implemen-
tation uses ’outside training image’ to train the network,
but the cosine-similarity metric only uses the same-different
pairs of the CFP data set.

3.3. Human Performance

Once the data set is ready we ask the next question, how
good are humans on this task? In [19], the authors evalu-
ated human performance on the LFW data set. Humans per-
formed 97.53% on cropped images of LFW. We expected
Frontal-Profile verification to be harder than LFW evalu-

ation. With similar cropped images we note that humans
perform 94.57% on the frontal-profile experiment in com-
parison to 96.24% on frontal-frontal experiment of our CFP
data set. We note that the degradation of human perfor-
mance from LFW to the CFP frontal-profile data set is sig-
nificantly less than what state-of-the-art algorithms show.
This also indicates the need for research to tackle large pose
variation.

To provide a sense of how hard the problem is for hu-
mans, we show in Figure 4 the top mistakes made by hu-
mans on Frontal-Profile. Each Mechanical Turk worker
scores each image on a scale of 1-5, where higher score
means more similar. We show top three mistakes from same
pair and not-same pair in the image.

Human experiments are performed via Amazon Mechan-
ical Turk. We show each pair of images to 5 workers who
may or may not be familiar with the individual being de-
picted. We then ask each of them to rate the similarity be-
tween pairs on a scale 1 to 5 (where 1 is definitely different
and 5 is definitely same). This shows the confidence of the
decision from the user. We remove any outlier or erroneous
workers and average out their scores to produce the final ac-
curacy and ROC curve. The interface for human evaluation
is very simple as depicted in figure 3.

4. Experimental Evaluation

To show the difficulty posed by Frontal-Profile verifica-
tion in our CFP data set, we evaluate numerous state-of-the-
art algorithms on this data set. We look at those algorithms



that perform well on unconstrained or ‘in wild’ data sets like
LFW and whose implementations are publicly available.
We consider different types of feature extraction techniques
like HoG [10], LBP [1] and Fisher Vector [31] along with
different metric learning techniques like Sub-SML [5] and
others as reported in [31]. Sub-SML [5] appears to be very
successful metric learning technique compared to others on
the LFW data set. We run the experiment on both Frontal-
Frontal and Frontal-Profile in ‘restricted’ settings. We also
used a Deep learning implementation [9] which uses out-
side images for training the network.

4.1. Algorithms

We use three different types of feature extraction tech-
niques, the details of which are discussed below :

• HoG : We extract square patches of width 10, 15, 30,
50 pixels centered around each of the 30 facial key-
points. Then we extract HoG features of cell-size 8
from these patches and concatenate them to form a 53k
dimensional HoG feature of the face. Multiple-scale
patches are used to provide a multi-resolution view of
the face. We use the VLFeat [34] implementation of
HoG.

• LBP : Similar to HoG we extract square patches of
size 10, 15, 30, 50 and 100 pixels centered around 30
key-points. We then extracted uniform LBP features
(sampling points 16) of radius 1 and concatenate them
to form a 36k dimensional LBP feature of the face.

• Fisher Vector : We used publicly available code of
Fisher Vector and followed the same principle of [31].
However we didn’t use horizontal flipping of images
to make it consistent with other features. Fisher vector
encoding with 512 cluster centers result in a 67,584
dimensional feature.

• Deep features : We use the trained network reported
in [9]. The authors use a deep network with 10 con-
volution layers, 5 pooling layers and 1 fully connected
layer. The receptive field of the CNN is 100×100×1.
The authors claim that a deeper network with a smaller
number of filters is easier to train because it uses fewer
parameters and performs better due to high amount of
non-linearity. The network is trained on the CASIA-
Webface data set [37] with 494,414 images of 10,575
subjects. We only used the network to extract features
of dimension 320. We used a simple Cosine similarity
measure over this feature.

We use different types of classifiers, mainly based on
metric learning. We use publicly available code of Sub-
SML [5]. All the features are reduced by PCA to 300
dimension, whitened and then used with Sub-SML. Other

than Sub-SML we use Diagonal metric learning (DML) as
reported in [31]. We should point out the differences be-
tween these different techniques. Diagonal Metric Learning
(DML) is learning to weight different feature dimensions,
which can be implemented via a linear SVM formulation.
Sub-SML learns both a distance metric along with a simi-
larity kernel, and includes a regularization in the formula-
tion, which penalizes too much distortion of these matrices
and is implemented via a fast first order method.

4.2. Results

We present the mean and standard deviation of Accu-
racy, Equal Error Rate (EER) and Area Under Curve (AUC)
over the 10 fold experiments for both Frontal-Profile and
Frontal-Frontal Experiment in Table 1 and also present the
average ROC curves for them in Figure 5.

4.3. Discussion

From the experimental results we can observe the signifi-
cant drop in performance of all the algorithms from Frontal-
Frontal to Frontal-Profile. On the other hand, human perfor-
mance only deteriorates around 2% from Frontal-Frontal to
Frontal-Profile. However most of the algorithms degrade
around 10%. For Frontal-Frontal, Deep features produce
near-human accuracy. Whereas for Frontal-Profile it falls
short of human performance by 11%. This means even
though the problem is hard for humans, they perform well
compared to current state-of-the-art algorithms. Thus there
is a huge room for improvement.

In the restricted protocol, we can see that Fisher Vector
with Sub-SML performs best of all the algorithms. We can
observe that Fisher vector is a much better feature than HoG
and LBP as it is more robust to pose variation. Also HoG
and LBP features used in the baseline, need dense sets of 30
facial key-point to extract patches, whereas Fisher Vector
only needs 3 key-points for rough alignment. We also com-
pare different metric learning algorithms with Fisher vector
as the feature. We note that Sub-SML is much better as
a metric learning method due to the regularization used in
the formulation. Diagonal Metric Learning (DML) formu-
lation performs significantly worse in Frontal-Profile than
in Frontal-Frontal.

We are not able to test state-of-the-art deep learning tech-
niques on LFW, on our CFP data set since they are not pub-
licly available and cannot be replicated with existing public
data sets and available resources. We used a deep learn-
ing implementation [9], which achieves human accuracy
on the Frontal-Frontal data. However it falls far short of
human accuracy on Frontal-Profile. It would be interesting
to observe the performance of current state-of-the-art deep
learning methods on our CFP data set.

In training the deep network [9], the author used 7
key-points on both sides of the face to align the images.



Table 1. Performance comparison on CFP data set (Mean Accuracy and standard deviation over 10 folds)

Frontal-Profile Frontal-Frontal
Algorithm Accuracy EER AUC Accuracy EER AUC

HoG + Sub-SML 77.31 (1.61 ) 22.20 (1.18) 85.97 (1.03) 88.34 (1.33) 11.45 (1.35) 94.83 (0.80)
LBP + Sub-SML 70.02 (2.14) 29.60 (2.11) 77.98 (1.86) 83.54 (2.40) 16.00 (1.74) 91.70 (1.55)
FV + Sub-SML 80.63 (2.12) 19.28 (1.60) 88.53 (1.58) 91.30 (0.85) 8.85 (0.74) 96.87 (0.39)

FV + DML 58.47 (3.51) 38.54 (1.59) 65.74 (2.02) 91.18 (1.34) 8.62 (1.19) 97.25 (0.60)
Deep features 84.91 (1.82) 14.97 (1.98) 93.00 (1.55) 96.40 (0.69) 3.48 (0.67) 99.43 (0.31)

Human 94.57 (1.10) 5.02 (1.07) 98.92 (0.46) 96.24 (0.67) 5.34 (1.79) 98.19 (1.13)

(a) (b)
Figure 5. Roc curve for (a) Frontal-Profile and (b) Frontal-Frontal

However in profile faces, key-points from both sides are
not available. In future we plan to find a way to perform
this alignment and fine-tune two separate deep networks on
Frontal and Profile images of the data set to improve the
performance. There is also further possibility to train met-
ric learning over these features. Sub-SML produced worse
result than simple cosine similarity over deep features.

5. Conclusion

This work introduces a new data set which aims to en-
able the study of face recognition in unconstrained images
with large pose variation. We analyzed the performance of
several different algorithms using a restricted protocol and
showed how all of them degrade from Frontal-Frontal to
Frontal-Profile. We also used a deep learning based algo-
rithm and showed that it fails to achieve near-human perfor-
mance in Frontal-Profile unlike Frontal-Frontal. However
there are many alternate ways to improve the trained deep
network by separately fine-tuning it over Frontal and Profile
images and training additional metric learning approaches
over deep features. We plan to address these issues in fu-
ture and try to develop good deep learning architectures that

can handle pose variation without explicitly using millions
of Profile images. Our data set also provides this opportu-
nity to other researchers. The gap between current state-of-
the-art algorithms on this data set and human performance
suggests that there is a lot of room for improvement.
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